Introduction to Tensor Decompositions and their Applications in Machine Learning

نویسندگان

  • Stephan Rabanser
  • Oleksandr Shchur
  • Stephan Günnemann
چکیده

Tensors are multidimensional arrays of numerical values and therefore generalize matrices to multiple dimensions. While tensors rst emerged in the psychometrics community in the 20th century, they have since then spread to numerous other disciplines, including machine learning. Tensors and their decompositions are especially bene cial in unsupervised learning settings, but are gaining popularity in other sub-disciplines like temporal and multi-relational data analysis, too. The scope of this paper is to give a broad overview of tensors, their decompositions, and how they are used in machine learning. As part of this, we are going to introduce basic tensor concepts, discuss why tensors can be considered more rigid than matrices with respect to the uniqueness of their decomposition, explain the most important factorization algorithms and their properties, provide concrete examples of tensor decomposition applications in machine learning, conduct a case study on tensor-based estimation of mixture models, talk about the current state of research, and provide references to available software libraries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 2 Applications and Future Perspectives

Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchi...

متن کامل

Tensor Decompositions for Signal Processing Applications

The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the ...

متن کامل

Multi-Level Cluster Indicator Decompositions of Matrices and Tensors

A main challenging problem for many machine learning and data mining applications is that the amount of data and features are very large, so that low-rank approximations of original data are often required for efficient computation. We propose new multi-level clustering based low-rank matrix approximations which are comparable and even more compact than Singular Value Decomposition (SVD). We ut...

متن کامل

From Tensor to Coupled Matrix/Tensor Decomposition

Decompositions of higher-order tensors are becoming more and more important in signal processing, data analysis, machine learning, scientific computing, optimization and many other fields. A new trend is the study of coupled matrix/tensor decompositions (i.e., decompositions of multiple matrices and/or tensors that are linked in one or several ways). Applications can be found in various fields ...

متن کامل

Tensor Decompositions via Two-Mode Higher-Order SVD (HOSVD)

Tensor decompositions have rich applications in statistics and machine learning, and developing efficient, accurate algorithms for the problem has received much attention recently. Here, we present a new method built on Kruskal’s uniqueness theorem to decompose symmetric, nearly orthogonally decomposable tensors. Unlike the classical higher-order singular value decomposition which unfolds a ten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.10781  شماره 

صفحات  -

تاریخ انتشار 2017